Meet Inspiring Speakers and Experts at our 3000+ Global Conference Series Events with over 1000+ Conferences, 1000+ Symposiums
and 1000+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.

Explore and learn more about Conference Series : World's leading Event Organizer

Back

Ahmad Ifseisi

Ahmad Ifseisi

King Saud University, Saudi Arabia

Title: Incorporation of micro and nanoparticles in porous polymer monolithic columns for capillary liquid chromatography application

Biography

Biography: Ahmad Ifseisi

Abstract

Capillary liquid chromatography has become one of the most important developments in separation technology. According to the literature, it’s widely accepted that capillary liquid chromatography performed using columns with an internal diameter less than 500 μm. This technique carried out using fused silica capillary columns and prepared with a variety of different stationary phases. However, the successful development of this technique is closely related to the technical challenges associated with the columns manufacturing. Monolithic media have rapidly become popular and attracted increasing interest as separation phases. They consist of a single rigid piece of porous material that possesses a unique bimodal pore structure distribution with micrometer sized macropores and nanometer sized mesopores. Unfortunately, unmodified monolith is lake of small mesopores that comes at the cost of surface area. The better specific surface area for methacrylate polymers is within 10 m2/g. Although, the large macropores provides advantages in the separations of large molecules such as proteins, it does not provide the sufficient interaction sites for separation of small molecules especially with isocratic modes. However, several approaches have been proposed to enhance the separation efficiency of the monolithic columns. In this work, small amounts of micro/nanoparticles such as carbon nanotubes, metal organic frameworks and sporopollenin have been incorporated into the porous polymer monolithic capillary columns under specific conditions to enhance the separation efficiency of small molecules. Porous and hydrodynamic properties and the morphology of the prepared columns were thoroughly characterized. The columns were evaluated by separation mixtures of different compounds such as phenols, aromatics, ketones and drugs. The combination of both monoliths and capillary liquid chromatography systems offer several advantages that include fast and sensitive analysis, in addition to the consumption of much smaller amounts of solvents, samples and stationary phase materials, which will reflect positively on the environment and cost.